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Abstract— Ordinal learning (OL) is a type of machine learning
models with broad utility in health care applications such as diag-
nosis of different grades of a disease (e.g., mild, modest, severe)
and prediction of the speed of disease progression (e.g., very fast,
fast, moderate, slow). This paper aims to tackle a situation when
precisely labeled samples are limited in the training set due to cost
or availability constraints, whereas there could be an abundance
of samples with imprecise labels. We focus on imprecise labels
that are intervals, i.e., one can know that the a sample belongs
to an interval of labels but cannot know which unique label
it has. This situation is quite common in health care datasets
due to limitations of the diagnostic instrument, sparse clinical
visits, or/and patient dropout. Limited research has been done to
develop OL models with imprecise/interval labels. We propose a
new Hybrid Ordinal Learner (HOL) to integrate samples with
both precise and interval labels to train a robust OL model.
We also develop a tractable and efficient optimization algorithm
to solve the HOL formulation. We compare HOL with several
recently developed OL methods on four benchmarking datasets,
which demonstrate the superior performance of HOL. Finally,
we apply HOL to a real-world dataset for predicting the speed
of progressing to Alzheimer’s Disease (AD) for individuals with
Mild Cognitive Impairment (MCI) based on a combination of
multi-modality neuroimaging and demographic/clinical datasets.
HOL achieves high accuracy in the prediction and outperforms
existing methods. The capability of accurately predicting the
speed of progression to AD for each individual with MCI has
the potential for helping facilitate more individually-optimized
interventional strategies.

Note to Practitioners—Machine learning (ML) algorithms have
been widely adopted to support disease diagnosis and prognosis.
In some situations, the outcome variable of interest is on an
ordinal scale, i.e., it includes several classes with a natural order.
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For example, the variable of interest can be the grade of a
disease as mild, moderate, or severe; or it can be the progression
speed of a disease as very fast, fast, moderate, or slow. Ordinal
learning (OL) is the type of ML algorithms for ordinal variable
prediction. Most existing OL algorithms can only include samples
with precise labels in training. However, it is common to have
samples with imprecise/interval labels, i.e., we know that a sample
belongs to a range of classes/labels but do not know which
specific class/label it belongs to. This situation can happen due
to a variety of different reasons such as use of less accurate
diagnostic instrument under cost or availability constraints,
sparse clinical assessment, and patient dropout. We propose
a Hybrid Ordinal Learner (HOL) to integrate samples with
both precise and interval labels to train a robust OL model.
HOL is evaluated using four public benchmarking datasets and
shows superior performance compared to existing methods. Also,
we apply HOL to a real-world dataset for predicting the speed
of progressing to Alzheimer’s Disease (AD) for individuals with
Mild Cognitive Impairment (MCI). MCI is the prodromal stage
of AD. Individuals with MCI show noticeable signs of memory
loss and cognitive declines, but these symptoms are not severe
enough to interfere their independent living. HOL achieves high
accuracy in predicting the speed of progressing to AD for each
MCI subject (e.g., the speed of ‘very fast’, ‘fast’, ‘moderate’,
or ‘slow), which could potentially help facilitate the development
of more individually-optimized interventional strategies.

Index Terms— Machine learning, ordinal learning, health care,
imprecise labels.

I. INTRODUCTION

MACHINE learning (ML) algorithms have been widely
adopted to support health care automation. Supervised

learning is a type of ML algorithms, in which a model is
trained to predict an outcome variable (y) based on fea-
tures (x). Within supervised learning, the models can be
future divided according to the type of the outcome variable.
For categorical outcomes, classification models are used; for
numerical outcomes, regression models can be appropriate.
There is another type of models targeting the outcome variable
that contains several classes but with a natural order, known
as ordinal learning (OL) models. OL models have important
utility in various health care applications such as diagnosis of
different grades of a disease (e.g., mild, modest, severe) and
prediction of the speed of disease progression (e.g., very fast,
fast, moderate, slow).

Various OL models have been developed in the literature,
such as support vector ordinal regression [1], ordinal forest [2],
ordinal Gaussian Process [3]. A common limitation of these

1545-5955 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ of Calif San Francisco. Downloaded on June 09,2024 at 05:05:24 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-0475-004X
https://orcid.org/0000-0002-1946-8063
https://orcid.org/0000-0001-5655-6831
https://orcid.org/0000-0001-7028-3681


2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

OL models is that they can only use precisely labeled samples
in training, i.e., each sample must belong to one and only one
class. However, in many applications, it is difficult to acquire
a sufficient number of precisely labeled samples due to cost or
availability constraints, whereas there could be an abundance
of samples with imprecise/interval labels. For a sample of this
kind, we can know that it belongs to an interval of labels,
[l, l + 1, . . . , l + k], but we cannot know which specific label
the sample has. Next, we give some practical examples to
illustrate this situation:

A motivating example in disease diagnosis: In determining
the grade of a disease as mild, moderate, or severe, it may need
expensive or invasive diagnostic approaches (e.g., imaging,
biopsy) to determine the precise grade of the disease for a
patient, whereas it may be relatively easier to find out if
the disease belongs to an interval of grades such as mild-to-
moderate using less expensive instrument such as symptom
checklists. In this case, there can be limited samples with
precise grades/labels in the training dataset but more samples
with interval labels.

A motivating example in disease prognosis: In predicting
the progression speed of a disease, the similar challenge exists
with the training dataset. In the case study of this paper,
we included a real-world application of using multi-modality
neuroimaging data to predict the speed of progressing to
Alzheimer’s Disease (AD) for patients with Mild Cognitive
Impairment (MCI) as very fast, fast, moderate, and slow. There
are limited samples with precise progression speeds/labels due
to sparse clinical assessments and patient dropout, whereas
there are more samples with interval labels. In both the afore-
mentioned diagnostic and prognostic scenarios, it is important
to integrate samples with both precise and interval labels in
order to train a robust OL model.

In this paper, we target a situation where one needs a
model to predict the precise ordinal class label for each sample
during deployment, such as the grade of a disease or speed
of progression, but the dataset used to train this model com-
prises precisely-labeled and interval-labeled samples. Limited
research has been done to develop OL models that can incor-
porate interval-labeled samples in training [4], [5]. However,
the estimated discriminative ordinal functions in the form of
combinations of kernel functions are rough as the coefficients
of kernels can only take integer values. On a parallel track, the
problem of non-unique labels has been investigated in multi-
class classification, and researchers have proposed various
algorithms based on expectation-maximization [6], [7], greedy
heuristics [8], convex optimization [9], and maximum margin
formulation [10]. However, these algorithms do not con-
sider the order of classes/labels. Relatedly, robust algorithms
were developed for noisy label classification [17], [18], [19],
[20], [21]. It is important to note that noisy labels are different
from interval/non-unique labels which is the focus of this
paper. Noisy labels correspond to incorrect labels assigned
to samples, whereas interval/non-unique labels involve true
labels, but with uncertainty about which one within the interval
is the correct label.

To fill the gap of existing research, we propose a new Hybrid
Ordinal Learner (HOL) to integrate samples with precise and

interval labels to train a robust OL model. The contributions
of this paper are summarized as follows:

• New model formulation. We propose a non-linear model
formulation of HOL. While most existing research in
this area focuses on linear models, HOL provides the
flexibility to address application domainswhere the data
has complicated relationships. Also, this study identifies a
sufficient and necessary condition for a proper loss func-
tion when the training samples include interval-labeled
samples. We further propose a general form of the loss
function that satisfies this condition. This not only helps
us design the loss function of HOL in this paper, but also
provides a general framework that allows more work to
be done for developing OL models with interval-labeled
samples by other interested researchers.

• Tractable and efficient optimization algorithm. The
challenge for non-linear model formulation is loss of
tractability and efficiency in model estimation. To address
this challenge, we propose a novel conversion method that
converts the HOL formulation into an equivalent formu-
lation of learning a set of binary classifiers with coupled
parameters.Because binary classification has been more
studied in the literature, this conversion allows us to
borrow ideas from binary classification. Furthermore,
we propose convex surrogates for the loss function in
the converted formulation, which allows the optimization
to be solved using efficient convex solvers.

• Benchmarking experiments. We compare the perfor-
mance of HOL with several recently developed OL
models that can accommodate interval labels on four
benchmarking datasets. HOL shows better performance.

• Contribution to early prediction of AD. We apply HOL
to an application of predicting the speed of progressing
to AD for individuals with MCI—an early stage before
dementia—based on multi-modality neuroimaging and
demographic/clinical datasets. Accurate prediction of the
speed of progressing to AD for each MCI subject as ‘very
fast’, ‘fast’, ‘moderate’, or ‘slow’ is important for facil-
itating the development of more individually-optimized
interventional strategies. HOL achieves high accuracy in
the prediction and outperforms competing methods.

II. RELATED WORKS

A. Ordinal Learning (OL) Methods

The existing OL models mainly fall into four categories.
One category transforms the ordinal scales into numeric
values, which converts the problem into a regression prob-
lem [11]. This is an over-simplification for the metric distance
between different ordinal labels. The second category of
models decomposes the ordinal problem into classification
tasks [12]. However, this does not take full advantage of
ranking information of ordinal classes. The third category of
algorithms fits a regression with a set of thresholds to identify
the ranking responses. Shashua et. al [13] generalized support
vector methods to ordinal regression via defining a set of
thresholds. Chu et. al [1] modified the support vector ordinal
regression through imposing ordinal inequality constraints
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on the thresholds. The fourth category of algorithms is
to formulate a large, augmented classification problem by
considering the ordinal information. Har-Peled et al. [14] intro-
duced a constrained classification framework that was able
to solve ranking and multilabel classification problems. Her-
brich et al. [15] showed that each ordinal regression problem
can be converted to a preference learning problem based on
pairs of objects. However, all the aforementioned algorithms
cannot incorporate interval-labeled samples in training.

B. OL and Other Machine Learning Methods With
Interval/Non-Unique/Noisy Labels

Limited research has been done to develop OL models
with interval labels. Antoniuk et al. [4] was the first one
to address this problem by introducing a specific V-shaped
interval-insensitive loss under a linear ordinal classifier,
which can be solve by a double-loop cutting plane solver.
Later, Manwani and Chandra [16] proposed exact passive-
aggressive (PA) online algorithms for learning to rank based
on the interval insensitive loss under the linear ordinal clas-
sifier. Note that both papers only investigated linear ordinal
classifiers. Manwani [5] extended the previous work into a
non-linear ordinal classifier and proposed an online learning
algorithm for parameter estimation. However, this algorithm is
rough, allowing only integer coefficients for the representative
discriminative functions.

Another related field is multi-class classification in which
research has been conducted to address the lack of unique
labels for some samples. A sample of this kind is associated
with a set of potential labels, but it is unknown which specific
label it has. This is a similar situation to the interval label in
OL, but the concept of “interval” does not apply here because
there is no order of the labels/classes in multi-class classifica-
tion. To address non-unique labels in multi-class classification,
some researchers proposed to use expectation-maximization
based algorithms to fill in the ‘missing’ labels and estimate the
parameters [6], [7]. Cour et al. [9] proposed a convex learning
formulation by discriminating the average output from all
candidate labels against the outputs from non-candidate labels.
Yu and Zhang [10] developed a maximum margin formulation
to directly optimize the margin between the ground truth label
and all other labels. However, all these existing algorithms
focus on multi-class classification problems in which the class
labels do not have an order. They are not suitable for ordinal
learning.

In multi-class classification, some methods have been devel-
oped to handle noisy labels, where some training samples
may be labeled incorrectly. For instance, Krawczyk et al. [17]
utilized fuzzy one-class classifiers assigned to specific classes
to capture distinguishing characteristics and mitigate label
noise. Wu et al. [18] introduced a method using a noise transi-
tion matrix to learn from solely noisy-similarity-labeled data.
Villacampa-Calvo et al. [19] developed Gaussian Process clas-
sifiers with the capability of incorporating prior information of
known noise levels. However, these methods are devised for
multi-class classification problems and therefore not directly
applicable to ordinal classes. Moreover, noisy labels differ

from interval/non-unique labels. Specifically, noisy labels refer
to erroneous labels assigned to samples, whereas interval/non-
unique labels contain the true labels but with uncertainty about
which one within the interval is the correct label.

C. Prediction of MCI Progression to AD Using
Multi-Modality Neuroimaging Data and Machine Learning

This work is motivated by the application domain of using
multi-modality neuroimaging datasets for early prediction of
the progression to AD for individuals with MCI. We briefly
review the existing research in this area.

Neuroimaging has shown great promise for early prediction
of AD [20], [21]. Multi-modality neuroimaging datasets pro-
vide complementary measures for different aspects of the brain
affected by the disease [22]. Past research has shown improved
prediction capability of combining multi-modality neuroimag-
ing datasets compared to using a single modality [23], [24].
Two commonly used modalities are MRI and PET, which
measure structure and function of the brain, respectively. Most
existing research combining MRI and PET for predicting
MCI progression to AD formulates the prediction task as a
binary classification problem, which classifies an individual
with MCI as a converter if the individual progresses to AD
by a pre-defined timeframe, and as a non-converter otherwise.
Various machine learning methods have been proposed. For
example, Zhang et al. [25] utilized an attention mechanism
in the proposed deep multi-modal fusion network to extract
discriminative features for MCI classification. Zhou et al. [26]
proposed a latent feature representation learning framework
which learned common latent representations through samples
with all modalities and modality-specific latent representations
through samples with specific modalities. Zhou et al. [27]
further mapped multi-modality neuroimaging data into learned
latent representations, and the final classification results were
obtained by an ensemble strategy for diversified support vector
machine (SVM) classifiers. Zhu et al. [28] developed a rank
minimization multiple-kernel learning model which imposed
low-rank constraint on the regression coefficient matrix of all
modalities and adaptively measured the contribution of each
sample by self-paced learning. Liu et al. [29] proposed an
Incomplete-Multimodality Transfer Learning (IMTL) model
by building predictive models based on different sub-cohorts
of samples with same missing modalities and combining the
model estimation processes to allow for transfer learning.

However, all these existing methods are binary classifiers,
which cannot predict the different speeds of progressing to
AD for each MCI subject—a capability provided by an OL
model. To our best knowledge, little research has been done to
predict the speed of MCI progression to AD using OL models,
especially by leveraging datasets with imprecise/interval labels
to build robust models.

D. Gaps in the Existing Research

As reviewed in the previous sections, there are gaps in
both the machine learning field and the application domain.
In machine learning, most existing OL models cannot integrate
interval-labeled samples in training. There is only a handful
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of recent studies developing OL models with interval labels as
mentioned previously. However, these studies either focus on
linear models or lack rigorous model estimation procedures.
In a related field of multi-class classification, some methods
have been developed to incorporate samples with non-unique
labels in training. However, these methods cannot be directly
used to build an OL model because they do not account for
the intrinsic order of the class labels. Some other methods
have been developed to tackle noisy labels. However, these
approaches have a different focus from ours. Noisy labels are
incorrect labels assigned to samples, whereas interval/non-
unique labels contain the true labels but with uncertainty
about which one within the interval is the correct label.
Similarly, in the application domain, most existing studies
treat the problem of predicting MCI progression to AD as
a binary classification problem. There is a lack of studies for
progression speed prediction via training robust OL models
with interval labels.

Therefore, in this paper, we aim to fill the aforementioned
gaps by developing a novel HOL method, which can integrate
samples with precise and interval labels to train a robust OL
model. We demonstrate the superior performance of HOL in
predicting the speed of progression to AD for individuals with
MCI.

III. PROPOSED HYBRID ORDINAL LEARNER (HOL)

A. Notations

Let X = Rd be the d−dimensional feature space and
Y = 1, . . . , K be the label space. Different from multi-class
classification, the consecutive integers in 1, . . . , K follow an
order. In this paper, we use ‘labels’ and ‘classes’ interchange-
able to refer to the integers contained in Y .

A typical OL model consists of a set of ranking func-
tions, fk, k = 1, . . . , K − 1, which satisfy the constraint of
f1 ≤ . . . ≤ fK−1. To predict the label for a sample x, one
can compute the outputs from the ranking functions for this
sample, f1(x),. . . , fK−1(x). Then, the predicted label can be
obtained by

J (x) = 1 +

∑K−1

k=1
I ( fk(x) < 0), (1)

where I (·) is an indicator function. The meaning of (1) is that
the predicted label, J (x), is the number of negative ranking
functions in the sequence plus one. For example, if all ranking
functions are non-negative, the predicted label is 1; if all
ranking functions are negative, the predicted label is K ; if the
first k (1 ≤ k < K −1) ranking functions are negative and the
remaining ones are non-negative, the predicted label is k + 1.

Furthermore, the ranking functions can be decomposed into
a common function and class-specific intercepts, fk(x) =

h(x) + bk with b1 ≤ . . . ≤ bK−1 [1]. h(x) = ηT φ(x), where φ

includes transformations of the feature vector x and η contains
the combination coefficients. Depending on the form of φ, the
OL model can be linear or non-linear. A training dataset is
needed to learn the parameters such as η, b1, . . . , bK−1. For a
complete list of mathematical notations used in the remainder
of this paper, please see Appendix. D.

B. Mathematical Formulation of HOL

Consider a training dataset of n samples, (xi ,Fi ), i =

1, . . . ., n. In the conventional OL setting, every training
sample must have one and only one label. HOL allows the
training set to include samples with interval labels, i.e., Fi =[
Y l

i , Y r
i

]
⊆Y . For example, a sample may have an interval label

of [2, 4], meaning that the sample can be from class 2, 3,
or 4, but we do not know which precise class it is from. HOL
can incorporate samples with both interval and precise labels.
When Y l

i < Y r
i , Fi denotes an interval label. When Y l

i = Y r
i ,

Fi denotes a precise label.
The goal of HOL is to learn an OL model based on a

training set with the aforementioned characteristics. This can
be formulated as the following optimization problem:

min
f=( f1,..., fK−1)

∑n

i=1
L(J (xi ),Fi ) + µ||f||H,

s.t. f1 ≤ . . . ≤ fK−1, (2)

where L is a loss function defined on the training set that
will be discussed later, ||·||H is a norm in a metric space
H to regularize the complexity of the ranking functions,
and µ controls the trade-off between the loss and model
complexity.

Because Fi can be an interval, commonly used loss
functions for supervised learning models are not applicable.
In what follows, we first identify the sufficient and necessary
condition for a proper loss function of HOL (Definition 1).
Then, we propose a general form of the loss function that sat-
isfies the condition (Proposition 1). Finally, we proposed two
specific loss functions used in this paper (Proposition 2 and 3).
For notation simplicity, denote L(J (xi ),Fi ) by L(Ji ,Fi )

hereafter.
Definition 1: A proper loss function for HOL, L(Ji ,Fi ),

must satisfy two conditions:
(a) When the predicted label Ji falls within the true label

interval Fi =
[
Y l

i , Y r
i

]
, the prediction is considered correct

and the loss is zero. That is,

L(Ji ,Fi ) = 0 if Ji∈
[
Y l

i , Y r
i

]
.

(b) When Ji falls outside Fi , the loss should not decrease as
Ji is farther away from Fi . That is:{

L(Ji ,Fi ) ≤ L(Ji − 1,Fi ) if Ji < Y l
i

L(Ji ,Fi ) ≤ L(Ji + 1,Fi ) if Ji > Y r
i

For example, if the true label interval of a sample is [2,4],
the loss should be zero if the predicted label is 2, 3, or 4,
according to condition (a). An example for condition (b) is
the following: consider two samples i and j with the same
true label interval [2,4], whose predicted labels are 5 and 6,
respectively. Then, the loss for sample i should not be higher
than that for sample j . That is, the loss for sample i should
be lower than that for sample j , if we want to penalize more
for predictions that are farther away from the true interval; or
the losses of the two samples should be equal, if we want to
penalize predictions in the same way as long as they are not
in the true interval.
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Proposition 1 (General Form for the Loss in HOL):
A loss function L(Ji ,Fi ) that satisfies the conditions in
Definition 1 can be expressed as:

L(Ji ,Fi ) =


0 i f Ji∈

[
Y l

i , Y r
i

]∑Y l
i −1

k=Ji
wk,i i f Ji < Y l

i∑Ji −1

k=Y r
i

wk,i i f Ji > Y r
i ,

(3)

for any wk,i ≥ 0.
Proof:For notation simplicity, the subscript i is omitted in

the following derivation. According to the Definition 1, the
loss function L(J ,F) can be decomposed as

L(J ,F)

=


0 i f J∈

[
Y l , Y r ]

L
(
J, Y l) i f J < Y l

L
(
J, Y r) i f J > Y r

=



0 i f J∈
[
Y l , Y r ]∑Y l

−1

k=J

(
L
(
k, Y l)

− L
(
k + 1, Y l))

+ L
(
Y l , Y l)

i f J < Y l∑J−1

k=Y r

(
L
(
k + 1, Y r)

− L
(
k, Y r))

+ L
(
Y r , Y r)

i f J > Y r .

According to condition (a) in Definition 1, L
(
Y l , Y l

)
= 0

and L(Y r , Y r ) = 0. Define wk by

wk =


0 i f k∈

[
Y l , Y r ]

L
(
k, Y l)

− L
(
k + 1, Y l) i f k < Y l

L
(
k + 1, Y r)

− L
(
k, Y r) i f k > Y r .

According to condition (b) in Definition 1, we can know
that wk ≥ 0 for k < Y l and wk ≥ 0 for k > Y r . That is
wk ≥ 0 for all k. Then we have

L(J ,F) =


0 i f J∈

[
Y l , Y r ]∑Y l

−1

k=J
wk i f J < Y l∑J−1

k=Y r
wk i f J > Y r .

■
In theory, any loss function that can be expressed by (3) is

applicable for HOL. In this paper, we focus on two specific
forms of the loss function for computational ease, i.e., the
Mean Absolute Error (MAE) loss and the 0/1 loss, which are
given as follows:

Proposition 2 (MAE Loss in HOL): The MAE loss is the
minimum distance between the predicted label Ji and the true
interval Fi =

[
Y l

i , Y r
i

]
, i.e.,

L M AE (Ji ,Fi ) = min
Y∈Fi

|Y − Ji | =


0 i f Ji∈

[
Y l

i , Y r
i

]
Y l

i − Ji i f Ji < Y l
i

Ji − Y r
i i f Ji > Y r

i .

(4)

Proposition 3 (0/1 Loss in HOL): A loss of ‘1’ is incurred
if the predicted label Ji falls outside the true interval Fi ,

and the loss is ‘0’ otherwise, i.e.,

L0/1(Ji ,Fi ) = I (Ji ̸∈Fi ). (5)

It is straightforward to prove that (4) and (5) satisfy the
general form in (3). Here we provide an example to illustrate
these loss functions. Consider a sample with true label inter-
val [2,4]. Under the MAE loss, if the predicted label is 5, the
loss is 5-4=1; if the predicted label is 6, the loss is 6-4=2.
Under the 0/1 loss, both predictions will incur the same loss
of 1.

C. Conversion of the HOL Optimization

It is difficult to solve the HOL optimization in (2) especially
when the ranking functions f1, . . . , fK−1 are non-linear. This
is because the ranking functions are embedded in the loss
functions in a complicated form, which makes the optimization
intractable. To tackle this challenge, we propose a conversion
method that converts the original HOL optimization into an
equivalent formulation of learning K − 1 binary classifiers
with coupled parameters. Because binary classification has
been more studied in the literature, this conversion allows us
to borrow ideas from binary classification to effectively and
efficiently solve the HOL optimization.

Specifically, consider each ranking function fk to be a
binary classifier: if fk(x) > 0, x is classified to the interval
[1, k]; otherwise, x is classified to the interval [ k + 1, K ].
To train fk , we use a subset of training samples whose label
Fi is included in [1, k] or [ k + 1, K ]. This is a subset of
the whole training set excluding samples whose label interval
includes k. Denote this subset by:

Dk ={(xi ,Fi )|Fi⊆[1, k]orFi⊆[ k + 1, K ]; i = 1, . . . , n}.

Next, we can define the loss function of training fk as:∑
i∈Dk

wk,i I
(
Zk,i fk(xi ) < 0

)
,

where Zk,i = 1, −1, or 0 corresponds to Fi⊆[1, k],
Fi⊆[k + 1, K ], or k∈Fi , respectively. A loss of ‘1’ is incurred
for a sample if the predicted and true classes of the sample do
not agree. wk,i has been defined in (2) and is used to weight
different samples in the loss function. Finally, we can sum up
the loss of each fk and get the total loss for training the K −1
binary classifiers simultaneously, i.e.,

B( f, Z)≜
∑K−1

k=1

∑
i∈Dk

wk,i I
(
Zk,i fk(xi ) < 0

)
. (6)

Theorem 1 proves that B( f, Z) is equivalent to the HOL loss
in (2). The proof of Theorem 1 can be found in Appendix. A.

Theorem 1: Let L(J,F)≜
∑n

i=1 L(J (xi ),Fi ) denote the
HOL loss in (2), where the sample-wise loss is in the general
form in Proposition 1 .B( f, Z) is the total loss of K − 1
binary classifiers based on f1, . . . , fK−1, as defined in (6).
Then, L(J,F) = B( f, Z).

Based on Theorem 1, we can convert the HOL optimization
in (2) into an equivalent form as:

min
f=( f1,..., fK−1)

∑K−1

k=1

∑
i∈Dk

wk,i I
(
Zk,i fk(xi ) < 0

)
+ µ||f||H,

s.t. f1 ≤ . . . ≤ fK−1. (7)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ of Calif San Francisco. Downloaded on June 09,2024 at 05:05:24 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

To solve this optimization problem is to train K − 1 binary
classifiers with coupled parameters in f1, . . . , fK−1, which is
more tractable than solving the original optimization. In the
next section, we will present the algorithms to solve the
optimization in (7).

D. Algorithm for Solving the HOL Optimization

To solve the optimization in (2), we first propose to
use the hinge loss as a surrogate for the indicator func-
tion in (7) to make the optimization more tractable and
efficient to solve. The hinge loss is a convex upper bound
of the indicator function. Using the hinge loss and spelling
out the ranking functions as fk(xi ) = ηT φ(xi ) + bk , (2)
becomes:

min
η, b1,..., bK−1

∑K−1

k=1

∑
i∈Dk

wk,i ma x
(
0, 1 − Zk,i

(
ηT φ(xi )

+bk)) + µ||η||H,

s.t. b1 ≤ . . . ≤ bK−1. (8)

Next, we will present the algorithms for solving (8) under
the MAE loss and 0/1 loss, respectively:

1) Algorithm for Solving the HOL Optimization Under the
MAE Loss: It can be shown that wk,i = 1 if k ≤ Y l

i − 1
or k ≥ Y r

i under the MAE loss. Furthermore, Theorem 2
indicates that the constraint in (8) is automatically satisfied
with the MAE loss, so that we can solve an unconstrained
optimization problem. The proof of Theorem 2 can be found
in Appendix. B.

Theorem 2: Under the MAE loss, the solution of the
constrained optimization in (8) is the same as that of
the optimization without the constraint. (See proof in
Appendix. B)

Thus, the optimization in (8) under the MAE loss becomes:

min
η, b1,..., bK−1

∑K−1

k=1

∑
i∈Dk

ma x
(
0, 1 − Zk,i

(
ηT φ(xi ) + bk

))
+ µ||η||H. (9)

To solve (9), we borrow the max-margin concept from
SVM [30] and represent (9) into an equivalent form by
introducing slack variables ξ k

i and a tuning parameter λ, i.e.,

min
η,b1,..., bK−1, ξ

1
2
||η||

2
+ λ

∑K−1

k=1

∑
i∈Dk

ξ k
i

s.t.Zk,i
(
ηT φ(xi ) + bk

)
≥ 1 − ξ k

i ;

ξ k
i ≥ 0;

i∈Dk, k = 1, . . . , K − 1. (10)

To efficiently solve the optimization in (10), we derived
the dual form of the primal problem, which is summarized in
Theorem 3. The proof can be found in Appendix. C.

Theorem 3: Let Z denote a diagonal matrix, Z =

diag
(
{Z1,i , i∈D1}, . . . , {Z K−1,i , i∈DK−1}

)
. Let C denote a

covariance matrix with Ci j = φ(xi )
T φ

(
x j

)
= k

(
xi , x j

)
,

which can be computed by a kernel function k(·) defined on
the feature space. Then, the dual form of the primal HOL

optimization in (10) is:

min
γ

1
2
γ T ZC Zγ −

∑K−1

k=1

∑
i∈Dk

αk
i ,

s.t.
∑

i∈Dk
αk

i Zk,i = 0, k = 1, . . . , K − 1;

0 ≤ αk
i ≤ λ, i∈Dk, k = 1, . . . , K − 1, (11)

where γ =

({
α1

i∈ D1

}
, . . . ,

{
αK−1

i∈DK−1

})T
are the Lagrange

multipliers and λ is a tuning parameter.
The dual form of the optimization in (11) is convex and

can be solved by a quadratic programing solver, such as
CPLEX. When the sample size is large, the sequential minimal
optimization (SMO) algorithm [31] can be used to solve (10)
for computational efficiency.

2) Algorithm for Solving the HOL Optimization Under the
0/1 Loss: Under the 0/1 loss, we have wk,i = 1 if k = Y l

i − 1
or k = Y r

i , and wk,i = 0 otherwise. Theorem 2 does not hold
for the 0/1 loss. Thus, the optimization in (8) under the 0/1
loss becomes:

min
η, b1,..., bK−1

∑K

k=1

∑
i∈D′

k

max
(
0, 1 − Zk,i

(
ηT φ(xi ) + bk

))
+ µ||η||H

s.t. b1 ≤ . . . ≤ bK−1, (12)

where Dk is reduced to D′

k = {(xi ,Fi )|Y r
i = korY l

i = k + 1;

i = 1, . . . , n} since wk,i = 0 for samples in Dk\D′

k .
To solve (12), we can adopt a similar approach as that for

the MAE loss by first representing (12) into an equivalent form
by introducing slack variables, and then solving the dual form
of the primal problem. The details are skipped to save space.

IV. EXPERIMENT

In this section, we compare the performance of HOL
with existing OL models that can incorporate interval-labeled
samples based on four public benchmarking datasets.

A. Benchmarking Datasets

1) Abalones Dataset: This dataset is from the UCI repos-
itory. The goal is to predict the ages of abalones based
on 8 features such as sex, length, diameter, and shell weight.
The age of an abalone is determined by its number of
rings. An abalone is considered ‘young’, ‘adult’, or ‘old’
(i.e., class 1, 2, or 3) if its number of rings falls in (0,5], [8,11]
or [14,+∞), respectively. There is ambiguity in terms of class
membership for abalones whose numbers of rings fall in [6,7]
or [12,13]. These abalones are considered as samples with
interval labels. Overall, this dataset includes 3057 samples
with precise labels and 1120 samples with interval labels.
The training set includes 500 precisely-labeled samples and
1120 interval-labeled samples. 2557 precisely-labeled samples
are included in the test set. Note that in all the benchmarking
experiments, the test set only includes samples with precise
samples because we want to compute the accuracy of each
model for classifying samples into their belonging ordinal
classes.
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2) Auto-MPG Dataset: This dataset is from the UCI repos-
itory. The goal is to predict city-cycle fuel consumption in
miles per gallon (mpg) based on 8 features such as car name,
number of cylinders, horsepower, and weight. The mpg is
divided into four ordinal classes: class 1-4 corresponds to
mpg falling into (9 − 18], (18 − 23], (23 − 31], and (31 − 47].
This dataset only includes 398 automobile records with precise
labels. To compose a training set that includes both precisely-
and interval-labeled samples, we use a simulation method
described below. Using the simulation, the training set includes
45 precisely-labeled samples and 55 interval-labeled samples
on average over different simulation runs. 298 precisely-
labeled samples were included in the test set.

3) Boston House Price Dataset: This dataset is from the
UCI repository. The goal is to predict the median value of
owner-occupied homes (medv) in $1000’s for the Boston
metropolitan area based on 13 socio-economic features such
as the average room number, full-value property-tax rate, and
accessibility to radial highways. The medv is divided into
four ordinal classes: class 1-4 corresponds to medv falling
into (5,16], (16,20], (20,25], and (25, 50]. This dataset only
includes census tracts with 506 precise labels. To compose the
training set that includes both precisely- and interval-labeled
samples, we used a simulation method described below. Using
the simulation, the training set includes 89 precisely-labeled
samples and 111 interval-labeled samples on average over
different simulation runs. 306 precisely-labeled samples were
included in the test set.

4) Eucalyptus Soil Conservation Dataset: This dataset is
extracted from a published agricultural study in New Zealand
(Thomson and McQueen 1996) [43]. The goal is to predict
soil conservation capability of eucalyptus seedlots based on
19 features such as measurement of height, diameter by height,
survival, and other contributing factors. The soil conservation
capability is categorized into five ordinal classes: none, low,
average, good, and best. This dataset only includes 736 euca-
lyptus seedlots with precise labels. Using the simulation
described below, the training set includes 208 precisely-labeled
samples and 292 interval-labeled samples on average over
different simulation runs. 236 precisely-labeled samples were
included in the test set.

Simulation method for training data generation: The last
three datasets only contain precisely-labeled samples. To gen-
erate a training set with both precisely- and interval-labeled
samples, we adopt the following procedure. First, among all
the samples in the dataset, we split out a test set. For each
remaining sample, the upper bound yr and lower bound yl

for the interval label of this sample are generated as follows:
yr is generated from a discrete distribution defined on

[
y, K

]
,

where y is the true label of the sample and K is the total
number of classes in the dataset.

The probability mass function (PMF) of the discrete dis-
tribution is 1

s {F(yr
+ 0.5; y, 1) − F(yr

+ 1.5; y, 1)} for yr
=

y, y + 1, . . . , K . Here, F
(
a; µ, σ 2

)
denotes the cumulative

density function of a normal distribution; s is a normalizing
factor to make sure that the PMFs over different values
of yr sum up to be one. Similarly, the low bound yl is
generated from another discrete distribution defined on [1, y]

Fig. 1. Discrete distributions to generate the lower bound yl (left) and upper
bound yr (right) for a sample included in the training set.

with PMF being 1
s

{
F

(
yl

− 0.5; y, 1
)
− F

(
yl

− 1.5; y, 1
)}

for
yl

= 1, . . . , y. To better illustrate the two aforementioned
discrete distributions, we give an example. Suppose there are
five classes in a dataset, K = 5. Consider one sample from the
dataset with true label y = 3. Fig. 1 shows the discrete distri-
butions for the low bound yl and upper bound yr of the interval
label. According to these distributions, it is possible that
the generated yl and yr are the same, i.e., yl

= yr
= y = 3.

In this case, the sample has a precise label. It is also possible
that yl and yr are different, i.e., they can form any of the
intervals such as [1, 3], [2, 3], [1, 4], [2, 4], [3, 4], [1, 5], [2, 5]

and [3, 5]. Thus, this simulation method can generate a training
set with both precisely- and interval-labeled samples to suit our
need.

B. Competing Methods

We compare HOL with four competing methods:
HOL/no-interval: This is a special case of HOL where

the model training only uses precisely-labeled samples and
has to discard interval-labeled samples. Comparing HOL with
this special case aims to demonstrate the benefit of including
interval-labeled samples in training.

HOL/mid-interval: For interval-labeled samples, one could
assign each sample to the middle class within the inter-
val, creating a pseudo-precise label for the sample. These
pseudo-precisely-labeled samples are then combined with
precisely-labeled samples to train a HOL/no-interval model,
referred to as the HOL/mid-interval method. It is worth noting
that if the interval of a sample contains an even number of
labels, there is no middle class. In this case, we randomly
select from the middle two classes as the pseudo-precise label
for the sample.

VILMA: V-shaped interval insensitive loss minimization
algorithm [4]. This is a linear ordinal learning model that can
integrate both precisely- and interval-labeled samples.

PRIL: perceptron ranking using interval labeled data [8].
This is a non-linear ordinal learning model that can integrate
both precisely- and interval-labeled samples. As mentioned in
Introduction, this method used an online learning algorithm
for parameter estimation. However, the estimated discrimina-
tive ordinal functions in the form of combinations of kernel
functions are rough as the coefficients of kernels can only take
integer values.

C. Model Training and Performance Comparison

There are different variants of HOL, such as using the MAE
loss or the 0/1 loss, choice of the regularization parameter
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λ in the dual HOL optimization, and choice of the kernel
function. We consider these variants as tuning parameters and
select the best combination of the tuning parameters by a grid
search to minimize the classification error by HOL based on
10-fold cross validation (CV). The tuning parameters of the
other methods are selected in a similar way. Then, the trained
model under the best tuning parameters is used to classify
samples in the test set. The following test metrics are computed
and compared between different methods:

Overall classification accuracy (overall ACC): This is the
proportion of test samples that are correctly classified into
their belonging classes.

Average class-wise accuracy (ave. class-wise ACC):
We computed the classification accuracy of each ordinal class
and averaged over the class-wise accuracies.

Mean absolute prediction error (MSPE): Since ordinal
classes have a natural order, we computed the deviation of
the predicted class with respect to the true class of each test
sample and averaged over the deviations.

D. Results

Table I shows the overall ACC, average class-wise ACC,
and MSPE of different methods on four benchmarking
datasets. To help better visualize the results, Fig. 2 plots these
performance metrics. In general, HOL outperforms HOL/no-
interval and HOL/mid-interval. For the Abalones dataset,
HOL/no-interval shows a slightly higher average class-wise
ACC than HOL (0.78 compared to 0.77). This is because
the Abalones dataset contains many precisely-labeled samples
in the training set. Thus, whether or not the interval-labeled
samples are included in training does not have a great impact.

Comparing between HOL/no-interval and HOL/mid-
interval, the following observations can be drawn regarding
their relative performance. When HOL/no-interval performs
poorly, as seen in the Eucalyptus dataset with an overall
ACC of only 0.60, adding pseudo-precisely-labeled samples
by the HOL/mid-interval method results in an improved
ACC of 0.64. Conversely, when HOL/no-interval performs
well, such as for the Auto-MPG and Boston Housing
datasets, incorporating pseudo-precisely-labeled samples does
not provide significantbenefit. Interestingly, HOL/mid-interval
performs poorly in the Abalones dataset compared to HOL/no-
interval. As mentioned earlier, the Abalones dataset has
many precisely-labeled samples and utilizing them alone by
HOL/no-interval already yields good performance. Also, there
are numerous interval-labeled samples in this dataset. Creating
pseudo-precise labels for these samples introduces a significant
amount of noise in the model training, which degrades the
performance of HOL/mid-interval.Furthermore, we were inter-
ested in exploring the performance of existing OL methods
applied to the same datasets created for HOL/mid-interval,
which include both precisely-labeled and pseudo-precisely
labeled samples. We included popular OL methods such as
ordinal random forest and ordinal logistic regression in this
experiment. The ranges of ACC by these methods for the four
benchmarking datasets are 0.62-0.71, 0.59-0.67, 0.59-0.65 and
0.47-0.62, respectively. These metrics are in similar ranges as
HOL/mid-interval and worse than HOL.

TABLE I
PERFORMANCE COMPARISON OF HOL AND COMPETING METHODS ON

BENCHMARKING DATASETS (MEAN (STD) OVER 30 RUNS)

Additionally, we can see that HOL outperforms the other
competing methods, PRIL and VILMA. Even HOL/no-interval
works better than or comparable to PRIL and VILMA in
some metrics. This is because VILMA is a linear model
which cannot capture the complicated non-linear relationships
in these datasets. While PRIL is a non-linear model, it lacks a
rigorous solution procedure and the algorithm cannot converge
in some cases, which affects its performance.

V. CASE STUDY ON EARLY PREDICTION OF AD

AD is a devastating neurodegenerative disease that currently
affects 6.5 million people aged 65 and older in the U.S. [32],
and over 55 million people worldwide [33]. There is currently
no cure for AD. Early prediction bears the best hope for
interventions to slow down the disease progression. MCI is a
precursor to AD. Individuals with MCI show noticeable signs
of memory loss and cognitive declines, but these symptoms are
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Fig. 2. Bar charts for the performance metrics reported in Table I.

not severe enough to interfere their independent living. People
with MCI progress to AD dementia in different speeds. Also,
some people may not eventually progress to AD dementia if
the underlying cause of their MCI symptoms is not related to
AD but some other diseases. If one could accurately predict the
speed of progressing to AD for each MCI subject (e.g., ‘very
fast’, ‘fast’, ‘moderate’, or ‘slow), this capability will facilitate
the development of more individually-optimized interventional
strategies.

In this section, we apply HOL to predicting the speed of
MCI progression to AD in four ordinal classes, i.e., progress-
ing to AD in one year (class 1), between year one and year two
(class 2), between year two and year five (class 3), and beyond
five years (class 4), using multi-modality neuroimaging and
demographic/clinical datasets from the Alzheimer’ Disease
Neuroimaging Initiative (ADNI) project.

A. Dataset Description and Preprocessing

Introduction to ADNI: ADNI (http://adni.loni.ucla.edu) was
launched in 2003 by the NIH, FDA, private pharmaceutical
companies, and nonprofit organizations, as a $60 000 000,
5-year public-private partnership. After the initial ADNI
project ended, subsequent efforts known as ADNI-GO,
ADNI-2 and ADNI −3 added additional participants to aug-
ment the cohort. The primary goal of ADNI has been to test
whether MRI, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure
the progression of MCI and early AD. Determination of
sensitive and specific markers of very early AD progression

is intended to aid researchers and clinicians to develop new
treatments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials. The Principal Investigator
of this initiative is Michael W. Weiner, MD, VA Medical
Center and University of California-San Francisco. ADNI is
the result of efforts of many co-investigators from a broad
range of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across the US
and Canada. For up-to-date information, see http://www.adni-
info.org/.

Patient inclusion: Our study includes 349 samples
of 249 MCI patients from ADNI. Each sample corresponds to
one visit record of a patient when neuroimaging and clinical
data is collected. These visit records satisfy the following two
conditions: at the time of visit, the patient (1) has MCI but not
AD (since we want to predict the progression of MCI to AD),
and (2) is “amyloid-positive” determined through a global
standardized uptake value ratio (SUVR) cutoff of 1.4 which is
validated by autopsy correlation with Thal amyloid phase [34].
In this study, we focus on patients with amyloid-positive MCI,
because this sub-population is known to have an elevated risk
of progressing to AD. Prediction of the speed of progressing
for this sub-population has important clinical utility [35], [36].
Among the 349 samples, 204 have precise labels (55, 49, 54,
46 in class 1-4, respectively), whereas 145 have interval labels
(55 samples in class 2, 3, or 4; 90 samples in class 3 or 4).

Neuroimage processing and feature computation: To train
HOL and competing methods, we use T1 MRI, florbetapir-
PET (a type of amyloid-PET), and demographic/clinical
features of the patients. MRI is pre-processed using the
FreeSurfer 7.1 software following standard procedures [37].
156 commonly-used MRI features were extracted, including
volumetric measures for 68 cortical regions of interest (ROIs),
14 sub-cortical structures, and 6 ventricle structures, as well
as cortical thickness measures for the 68 ROIs. Amyloid-
PET is pre-processed using a PET Unified Pipeline [38], [39]
to obtain regional standardized uptake value ratios (SUVR)
measurements for 68 cortical ROIs, 14 sub-cortical structures,
68 white matter structures, and a mean cortical feature —
a total of 151 features. In addition, we also included
demographic/clinical features including gender, age and edu-
cation level; scores from common clinical instrument such as
the Mini-Mental State Examination (MMSE) and the Clinical
Dementia Rating Scale (CDR); status of the ε4 allele of
apolipoprotein E (APOE) gene—a genetic risk factor of AD.

Feature screening: This dataset contains high-dimensional
features compared to the benchmarking datasets. We use
feature screening to reduce redundant features by adopting
recursive feature elimination (RFE) [40]. In each iteration,
RFE excludes the feature with the least importance based on
a pre-defined metric. Two common metrics are adopted, one
based on partial correlation between features [41] and the other
based on multiple linear regression with each feature as the
response and all other features as regressors [42]. Features with
maximum partial correlation greater than 0.95 or with mean
relative absolute error in the regression smaller than 0.05 are
removed. The same feature screening procedure is applied to
all the methods for fair comparison.
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Fig. 3. Bar charts for the performance metrics reported in Table II.

TABLE II
PERFORMANCE COMPARISON OF HOL AND COMPETING METHODS ON

THE ADNI DATASET (MEAN (STD) OVER 30 RUNS)

B. Modeling and Results by Different Methods

We apply HOL and competing methods to this dataset.
Specifically, we use a 30-fold cross validation (CV) scheme
in which the patients are divided into 30 folds. One fold is
left out as the validation set, whereas the other folds form
the training set. Note that we divide patients not samples.
This is to avoid including samples from the same patient
into both the training and validation sets to cause overfitting.
HOL is trained using the training set and the model is then
applied to classify precisely-labeled samples in the validation
set. This process is iterated over the 30 folds. The same 30-fold
CV scheme is used for PRIL and VILMA. HOL/no-interval
employs the same scheme except that the training set only
includes precisely-labeled samples. For HOL/mid-interval the
training set includes precisely-labeled samples and pseudo-
precisely-labeled samples.

Table II shows the overall ACC, average class-wise ACC,
and MSPE of different methods based on CV. To help better
visualize the results, Fig. 3 plots these performance metrics.
It is clear from the results that HOL outperforms the other
methods across all metrics. HOL/ no-interval is the second-
best method, even outperform PRIL and VILMA which
can utilize interval-labeled samples in training. This can be
attributed to the inherent limitations of these methods such as
linearity and lack of a rigorous solution procedure.

HOL/mid-interval performs poorly, likely due to the
pseudo-precise labels created from interval labels, which
introduce a significant amount of noise into the training set.

The dataset used in this case study includes a similar num-
ber of interval-labeled samples as precisely-labeled samples,
meaning that almost half of the training data bears the risk
of being wrongly labeled by using the pseudo labels. Looking
across the results from the benchmarking datasets and from
this case study, we found that HOL/mid-interval’s performance
can be quite unstable, depending on the dataset. Furthermore,
we noted that the standard deviation of HOL/mid-interval is
the largest compared to the other methods, further indicating
the instability of this method. HOL/no-interval also has a large
standard deviation, because it only uses precisely-labeled sam-
ples in training, whereas the other methods can additionally
leverage interval-labeled samples to increase the training size.

VI. CONCLUSION

We developed a new method, HOL, to integrate samples
with both precise and interval labels to train a robust OL
model. A non-linear model formulation was proposed to
address application domains with complex data relationships.
To tackle the challenge in model estimation, we further
proposed a novel conversion method that converts the HOL
formulation into an equivalent formulation of learning a set of
binary classifiers with coupled parameters. The performance
of HOL was demonstrated using benchmarking datasets and
a real-world case study of predicting the speed of MCI
progression to AD. HOL outperformed competing methods
in these experiments.

This study has several limitations, which also inspire future
research. First, the development of more efficient optimization
solvers can be explored. In this study, a quadratic programing
solver was used to solve the dual form of the HOL opti-
mization when the sample size is relatively small and the
SMO algorithm was used when the sample size is relatively
large. For even larger data sets, more advanced algorithms are
needed to solve HOL for computational efficiency. Second,
we only discussed the algorithms under two loss functions,
the MAE and 0/1 loss. Other types of losses can be explored
in the HOL framework, such as the Mean Squared Error
(MSE) and Huber Loss. Third, in the AD application, we used
pre-extracted features from neuroimages to train HOL. Deep
learning methods can be developed to take 3D neuroimages
as input while at the same time leveraging precise- and
interval-labeled samples in training. Last but not least, it would
be interesting to apply HOL to other health care applications
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such as diagnosis of different grades of a disease and also to
other diseases not AD.
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APPENDIX

A. Proof of Theorem 1

For notation simplicity, denote J (xi ) by Ji hereafter. First,
we write out the loss function in (2) as follows:

L(Ji ,Fi ) =


0 i f Ji∈

[
Y l

i , Y r
i

]∑Y l
i −1

k=Ji
wk,i i f Ji < Y l

i∑Ji −1

k=Y r
i

wk,i i f Ji > Y r
i

=


0 i f Ji∈

[
Y l

i , Y r
i

]∑Y l
i −1

k=1
wk,i I (k ≥ Ji ) i f Ji ≤ Y l

i − 1∑K−1

k=Y r
i

wk,i I (k ≤ Ji − 1) i f Ji > Y r
i .

For any k, when Ji ≤ k, we have Ji = 1 +∑K−1
j=1 I

(
f j (xi ) < 0

)
≤ k, which indicates fk(xi ) ≥ 0 due to

the ordinal property of f j (xi ) (i.e., f1(xi ) ≤ . . . ≤ fK−1(xi ));
or else the inequality will not be satisfied. Thus, I (k ≥ Ji ) =

I ( fk(xi ) ≥ 0). Similarly, I (k ≤ Ji − 1) = I ( fk(xi ) < 0).
Thus, L(Ji ,Fi ) can be re-written as

L(Ji ,Fi ) =


0 i f J∈

[
Y l

i , Y r
i

]∑Y l
i −1

k=1
wk,i I ( fk(xi ) ≥ 0) i f fY l

i −1(xi ) ≥ 0∑K−1

k=Y r
i

wk,i I ( fk(xi ) < 0) i f fY r
i
(xi ) < 0.

According to the definition of Zk,i , it can be equivalently
written as

Zk,i =


1, i f k ≥ Y r

i

−1, i f k < Y l
i

0, i f k∈
[
Y l

i , Y r
i

)
.

Then we have

L(Ji ,Fi )

=


0 i f J∈

[
Y l

i , Y r
i

]∑Y l
i −1

k=1
wk,i I

(
Zk,i fk(xi ) < 0

)
i f ZY l

i −1 fY l
i −1(xi ) ≤ 0∑K−1

k=Y r
i

wk,i I
(
Zk,i fk(xi ) < 0

)
i f ZY r

i
fY r

i
(xi ) < 0

=

∑Y l
i −1

k=1
wk,i I

(
Zk,i fk(xi ) < 0

)
+

∑K−1

k=Y r
i

wk,i I
(
Zk,i fk(xi ) < 0

)
=

∑K−1

k=1
wk,i I

(
Zk,i fk(xi ) < 0

)
.

Hence,

L(J ,F) =

n∑
i=1

L(Ji ,Fi )

=

∑n

i=1

∑K−1

k=1
wk,i I

(
Zk,i fk(xi ) < 0

)
=

∑K−1

k=1

∑n

i=1
wk,i I

(
Zk,i fk(xi ) < 0

)
=

∑K−1

k=1

∑
i∈Dk

wk,i I
(
Zk,i fk(xi ) < 0

)
.

The last equation is based on the definition of Zk,i . Finally,
according to the definition of B( f, Z), we have L(J ,F) =

B( f, Z). ■

B. Proof of Theorem 2

Let BM AE ( f, Z) be the optimization function
in (9) (i.e., BM AE ( f, Z) =

∑K−1
k=1

∑
i∈Dk

ma x(
0, 1 − Zk,i

(
ηT φ(xi ) + bk

))
+ µ||η||H), and η, b1, . . . , bK−1

be its optimal solution. Due to convexity, the bk’s are closed
intervals, i.e., bk =

[
dk, d ′

k

]
, k = 1, . . . , K − 1. We will

prove Theorem 2 by contradiction. Suppose constraint of
b1 ≤ . . . ≤ bK−1 in (8) does not automatically hold in the
solution of (9). That is, assume bk > bk+1 for some k.

Let k ′ be another rank index different from k. Let Dl
k ′ denote

the lower subset of Dk ′ as

Dl
k ′ = {(xi ,Fi )|Fi⊆[1, k ′

]; i = 1, . . . , n},
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and Dr
k ′ denote the upper subset of Dk ′ as

Dr
k ′ = {(xi ,Fi )|Fi⊆[k ′

+ 1, K ]; i = 1, . . . , n}.

Let I l
k ′(bk) = {i∈Dl

k ′ : ηT φ(xi ) + bk ≤ 1} be the subset of
Dl

k ′ , where samples satisfy ηT φ(xi ) + bk ≤ 1, and I r
k ′(bk) =

{i∈Dr
k ′ : ηT φ(xi ) + bk ≥ −1} be the subset of Dr

k ′ , where
samples satisfy ηT φ(xi ) + bk ≥ −1.

Under the MAE loss, the subgradient of the loss function
with respect to bk is

gk ′(bk) =
∂B( f, Z)

∂bk
= −

∣∣I l
k ′(bk)

∣∣ +
∣∣I r

k ′(bk)
∣∣.

Then we have

gk+1(bk+1) − gk(bk+1)

= −
∣∣I l

k+1(bk+1)
∣∣ +

∣∣I r
k+1(bk+1)

∣∣ +
∣∣I l

k(bk+1)
∣∣ −

∣∣I r
k (bk+1)

∣∣
=

(
−

∣∣I l
k+1(bk+1)

∣∣ +
∣∣I l

k(bk+1)
∣∣)

+
(∣∣I r

k+1(bk+1)
∣∣ −

∣∣I r
k (bk+1)

∣∣).
It is clear that −

∣∣I l
k+1(bk+1)

∣∣ +
∣∣I l

k(bk+1)
∣∣ ≤ 0 and∣∣I r

k+1(bk+1)
∣∣ −

∣∣I r
k (bk+1)

∣∣ ≤ 0. We have gk+1(bk+1) −

gk(bk+1) ≤ 0. That is,

gk+1(bk+1) ≤ gk(bk+1). (13)

Since bk+1 is an optimal solution, we know that
gk+1(bk+1) ≥ 0.

Due to bk > bk+1 and the convexity of BM AE ( f, Z)

on bk, k = 1, .., K − 1, we have gk(bk+1) < 0. Then
gk(bk+1) < gk+1(bk+1), which contradicts (13). ■

C. Proof of Theorem 3

Let γ =

({
α1

i∈ D1

}
, . . . ,

{
αK−1

i∈DK−1

})T
, νk

i for i and k,
be the Lagrange multipliers, and λ be a tuning parameter. The
Lagrangian for the primal HOL optimization in (10) is

L =
1
2
ηT η −

∑K−1

k=1

∑
i∈Dk

αk
i

(
Zk,i

(
ηT φ(xi ) + bk

)
− 1 + ξ k

i

)
+ λ

∑K−1

k=1

∑
i∈Dk

ξ k
i −

∑K−1

k=1

∑
i∈Dk

νk
i ξ k

i . (14)

Then the optimal solution of the primal problem in (10) is
equivalent to the solution of the following optimization:

max
γ , ν

minη,b,ξ L . (15)

The KKT conditions for the primal problem require the
following to hold:

∇η L = η −

∑K−1

k=1

∑
i∈Dk

αk
i Zk,iφ(xi ) = 0,

∇bk L = −

∑
i∈Dk

αk
i Zk,i = 0, k = 1, . . . , K − 1, (16)

∇ξ k
i
L = −αk

i + λ − νk
i = 0, i∈Dk, k = 1, . . . , K − 1.

(17)

Then we have

η =

∑K−1

k=1

∑
i∈Dk

αk
i φ(xi ), (18)

νk
i = −αk

i + λ, i∈Dk, k = 1, . . . , K − 1. (19)

Inserting (18) and (19) into the optimization in (15), after
simplification we can get

max
γ, µ

L

=
1
2
ηT η −

∑K−1

k=1

∑
i∈Dk

αk
i

(
Zk,i

(
ηT φ(xi ) + bk

)
− 1 + ξ k

i

)
+ λ

∑K−1

k=1

∑
i∈Dk

ξ k
i −

∑K−1

k=1

∑
i∈Dk

(
−αk

i + λ
)
ξ k

i

=
1
2
ηT η −

∑K−1

k=1

∑
i∈Dk

αk
i

(
Zk,i

(
ηT φ(xi ) + bk

)
− 1

)
=

1
2
ηT η −

∑K−1

k=1

∑
i∈Dk

ηT αk
i Zk,iφ(xi )

−

∑K−1

k=1
bk

∑
i∈Dk

αk
i Zk,i +

∑K−1

k=1

∑
i∈Dk

αk
i .

=
1
2
ηT η −

∑K−1

k=1

∑
i∈Dk

ηT αk
i Zk,iφ(xi )

+

∑K−1

k=1

∑
i∈Dk

αk
i . (20)

Then inserting (18) into the optimization in (20), we can
have

max
γ

L = −
1
2

(∑K−1

k=1

∑
i∈Dk

αk
i Zk,iφ(xi )

)T

×

(∑K−1

k=1

∑
i∈Dk

αk
i Zk,iφ(xi )

)
+

∑K−1

k=1

∑
i∈Dk

αk
i

= −
1
2
γ T ZC Zγ +

∑K−1

k=1

∑
i∈Dk

αk
i

Additionally, the conditions in (16) give rise to the con-
straints of −

∑
i∈Dk

αk
i Zk,i = 0, k = 1, . . . , K − 1.

The conditions in (19) give rise to the constraints of

0 ≤ αk
i ≤ λ, i∈Dk, k = 1, . . . , K − 1.

Finally, the dual problem becomes

min
γ

1
2
γ T ZC Zγ −

∑K−1

k=1

∑
i∈Dk

αk
i ,

s.t.
∑

i∈Dk
αk

i Zk,i = 0, k = 1, . . . , K − 1;

0 ≤ αk
i ≤ λ, i∈Dk, k = 1, . . . , K − 1.

■

D. List of Mathematical Notations
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